Managing Discipline-Specific Metadata Within an Integrated Research Data Management System

ICEIS 2019:
03. - 05.05.2019

Marius Politze, Sarah Bensberg, Matthias S. Müller
RWTH Aachen University
Outline

• The Framework:
 Research Data Management at RWTH Aachen University

• Requirements Engineering
 Supported Business Processes and Requirements

• Putting Ontologies into Practice
 Implementation & Prototype Application

• Results
 First Evaluation and Conclusion
Timeline Coordinated Research Data Management at RWTH Aachen University

since 2015:
Project introducing research data management (RDM),
Cooperation of University Library, IT Center and Department Research & Career

2016: coordinated workshops and
2016: Consulting for researchers and research groups
2017: simpleArchive & Matadata Manager:
 Archival and description of research data
2018: Git ~2.5 TB & ObjectStore (current 500 TB, aim 5 PB in late 2019):
 Storage infrastructures for Data Management

2016: Combination of private and public cloud services
2017: Cooperation with FZ Jülich
2017: Cooperation with TU Darmstadt
2018: Service Provider within national NFDI4Ing Initiative
Integrated Research Data Management System
Example “Research Process”

Scientific Instrument

Attached Computer

Server

Windows Share
Digitally Enhanced “Research Process”

Scientific Instrument

Attached Computer

Server

Object Storage

Metadata Manager

Data

read

connect

search

Metadata
Formalized “Research Process”
Industry 4.0 Example
Semantic Representation of Sensor Data

myd:m123245 rdf:type i40:SensorMeasurement .
myd:m123245 rdf:hasValue "27.9"^^i40:DegreeCelsius .
myd:m123245 i40:hasMeasureTime "2016-03-24T12:38:54:12Z"^^xsd:DateTime .
myd:m123245 i40:fromSensor myd:Sensor123 .
...
Managing Discipline-Specific Metadata Within an Integrated Research Data Management System

ICEIS 2019 | 04.05.2019
Marius Politze, Sarah Bensberg, Matthias S. Müller

Slide by Sören Auer: Towards an Open Research Knowledge Graph, https://www.slideshare.net/soeren1611/towards-an-open-research-knowledge-graph
• Problem statement:
 – Management of heterogeneous research data is becoming more important on institutional level
 – Description of data within a knowledge graph seems like a feasible solution
 – Authoring semantic information is not feasible for most researchers
 – Information needs to be recorded when data is produced otherwise knowledge may be lost

• Goal
 – Build an application that allows researchers to ingest their data into the research knowledge graph
 – Allow flexible application profiles to create a single knowledge graph for the whole university
Considered Use Cases

- **Functional Requirements**
 - F1: retrieve available profiles
 - F2: save new metadata set
 - F3: metadata visibility
 - F4: show all own metadata sets
 - F5: edit stored metadata set
 - F6: query stored metadata
 - F7: suggestions for vocabulary ranges
 - F8: render metadata form based on a profile

- **Non-Functional Requirements**
 - N1: internationalization
 - N2: compatibility with DCAT
 - N3: Dublin Core as cross discipline standard
Semantic Data Model: A Path to the Scientific Knowledge Graph

- Using Virtuoso quad-store (Graph, Subject, Predicate, Object)
 - Represent data artifacts by PID
 - Record meta data as triples having the PID as a subject
 - Create a high level “Research Knowledge Graph”

- Separate management of “user generated” and “provided” data
 - Multiple disconnected graphs with different purposes
 - Default:
 - All Terms, Vocabularies, Meta Data, …
 - Default target for storage and search
 - Properties:
 - Includes all Properties from all application profiles
 - Profile1 … ProfileN
 - Application profile specific overrides
Prototype Application and Webservice – Rendering Form Based on Application Profile

Chemical Experiment

<table>
<thead>
<tr>
<th>RDF Range</th>
<th>HTML5 Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rdfs:Literal</td>
<td>text</td>
<td>Text</td>
</tr>
<tr>
<td>xml:dateTime</td>
<td>date</td>
<td>Date</td>
</tr>
<tr>
<td>md:metadataVisibility</td>
<td>radio</td>
<td>Radio</td>
</tr>
<tr>
<td>None</td>
<td>Text</td>
<td>Text</td>
</tr>
<tr>
<td>Other</td>
<td>select</td>
<td>Select</td>
</tr>
</tbody>
</table>

```xml

dc:title "a owl:AnnotationProperty" md:position=2 rdfs:label="Description"@en.


```
Prototype Application and Webservice – Storing Meta Data and Translate to Linked Data

Chemical Experiment

POST /metadata/profileN/20.11102/1d53500-75f7-475e-9128-825da4d90664
{
 "Description": "Solving salt in water",
 "Lab Technician": "John Doe",
 "Subject Area": "http://udcdata.info/030042",
 "Solute": "NaCl",
 "Solvent": "H2O"
}

SELECT ?s WHERE {
 GRAPH <profileN> {
 FILTER REGEX(STR(?label), "Value", "i") .
 }
}

http://hdl.handle.net/20.11102/1d53500-75f7-475e-9128-825da4d90664

dc:title "Solving salt in water"@en
dc:creator "Solving salt in water"@en
dc:subject http://udcdata.info/030042
profileN:solute "NaCl"@en
profileN:solvent "H2O"@en
Evaluation

- Automated Software Tests
- Mapping with DCAT
 - Catalog
 - Public
 - Internal for each Affiliation
 - Private for each Researcher
 - CatalogRecord
 - Meta data from DC is compatible
 - Partially automatic acquisition of values (affiliation, user)
 - Dataset
 - (Meta) data set recorded by the software
 - Distribution
 - PID and additional fields like URL of the data artifact

<table>
<thead>
<tr>
<th>Area</th>
<th>Coverage</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARQL</td>
<td>95.92%</td>
<td>47/49</td>
</tr>
<tr>
<td>RDFWrapperSchema</td>
<td>100.00%</td>
<td>68/68</td>
</tr>
<tr>
<td>RDFWrapperMetadata</td>
<td>91.32%</td>
<td>442/484</td>
</tr>
<tr>
<td>API</td>
<td>85.50%</td>
<td>171/200</td>
</tr>
<tr>
<td>MetadataSchema</td>
<td>94.44%</td>
<td>34/36</td>
</tr>
<tr>
<td>Metadata</td>
<td>92.65%</td>
<td>189/204</td>
</tr>
<tr>
<td>Total</td>
<td>91.35%</td>
<td>951/1041</td>
</tr>
</tbody>
</table>
Conclusion

- PID references to data artifacts help identification across participating decentralized systems
- Minimal compliance of application profiles fosters FAIR guiding principles
- Application was launched with pilot users and is now introduced to other use cases in chemistry, electrical engineering, material science and combustion engineering
- API is understandable and can be operated by researchers themselves
Thank you for your attention

Vielen Dank für Ihre Aufmerksamkeit